
Character Encodings

 J eremy Kahn
4/9/04

Last edited: 4/8/04

http://students.washington.edu/jgk/talks/char -enc/

Character Encodings:
Why should CL care?

● Linguistics ? spoken language

● Writing schemes are linguistically interesting

● But computer s don't know “letter s” (or
“words” or even “numbers”!)

● Computer s know bits (okay, bytes)

● ... we need a mapping from “letter” (or
“grapheme”) to bits

● (the wonder ful thing about standar ds...)

Mappings are... important

● Wrong character mapping? corpora are noise

● Corpus as fetched may not be in the format
your tools like

● Data interchange formats (e.g. XML , HTML)
r ely heavily on user (at some level) handling
encodings cor rectly

● ... you should be able to r ead the docs, even if
you can't wr ite your own conver ter

Mappings are... sociologically
interesting

● Histor ical and political:

– Goes way way back: {U,V,W,u,v,w} all emerged
from Roman V

– EBCDIC is one reason nobody likes old VAX
machines

● We'll explore some more contemporary history
shor tly...

Vocabulary 1

● Character

– “An abstract notion denoting a class of shapes
declared to have the same meaning or form”

– (Think “emic”)

● Glyph

– A specific instance of a character

– May (or not) include ligatures, ser ifs, etc

– (Think “etic”)

Character vs. Glyph
● Character
● LATIN CAPITAL LETTER A

● LATIN SMALL LETTER A

● Glyph
● A A A A A

● a a a a

● ..but a character is not quite a grapheme:

– “ch” is a grapheme in Spanish, but not English

A character ? a grapheme

Ç
Ç

C ¸

ch

cat

c h

c a t

(Spanish)

w
or

d
gr

ap
h

em
e

fi

li
ga

tu
re

f i

characters

a a

Vocabulary 2

● Character set (also character repertoire)

– A set of unique characters

● Coded character set

– A character repertoire, plus a non-negative integer
associated with each. This adds order ing, too.

● Code point (also code position)

– The integer associated with a character in a coded
character set

Character sets, coded character sets

● Digits (10) {0,1,2,3,4,5,6,7,8,9}

● English alphabet (26) {a,b,c,d,...v,w,x,y,z}

● (7-bit) ASCII (128) handles English well

● J?y? Kanji (1,945) Japanese newspapers

● Latin-1 (256) most of W . Europe

● Latin-2 (256) most of E. Europe

● Unicode (1000's) most of the world (?)

(How to find a Per l code point)

● Per l uses one datatype, but “under the hood” it
can be a number or a str ing. Usually, you don't
want to know, but here we do...

● The ord function takes a character as an
argument, and returns its code position (as an
integer)

● The chr function takes an integer as an
argument, and returns the character at that
code position

Vocabulary 3

● Octet (sometimes byte)

– Eight bits. Computers “think” in octets. (People
don' t, at least not without lots of practice.)

– (not all computer systems define byte to be 8 bits!)

● Encoding (also character encoding)

– Any algor ithmic scheme (often a list) that maps
each code point (and thus, each character) of a
coded character set to a unique ser ies of octets.

Vocabulary 4 (-bidden)

The phrase “code page” is widely used, for many
different purposes.

– character encoding

– bit or ientation

– a var iant of prefix encoding

So many, in fact, that it's near ly meaningless.

Therefore, let' s avoid “code page”.

Character encodings

A br ief history...

ASCII

● Names an encoding and a character repertoire

● Handles Amer ican English well (but not ¢, £)

– 128 character s, thus aka 7-bit ASCII – can be
represented in 7 bits

– Most Amer ican typewr iter character s

– 0x00 to 0x20 are dedicated to control characters

● ... is probably with us forever , like QWERTY.

[NUL] 0x00

[STX] 0x01

...

(space) 0x20

! 0x21

...

A 0x41

B 0x42

...

ASCII as a coded character set
` 0x60

a 0x61

b 0x62

...

z 0x7A

...

} 0x7D

~ 0x7E

[DEL] 0x7F

ASCII as a character encoding
Map the code point into a 7-bit integer on the lower-order 7 bits.

[NUL] 0x00 (0)000 0000

...

A 0x41 (0)100 0001 (binary)

... ...

a 0x61 (0)110 0001

... ...

~ 0x7E 0111 1110

[DEL] 0x7F 0111 1111

ASCII f[l]ounders

Ear ly signs of trouble with ASCII

– Alphabetization

– (whether to even have lowercase!)

– Which punctuation belongs in the canonical 128?
(cur rency symbols? Why $, but not ¢?)

– And what about all them funny accented
character s?

The first-born: Latin-1

● Expands to 256 codepoints

● Handles Western Europe rather nicely.

● Other names:

– ISO-8859-1

– aka “8-bit ASCII”, but this is not PC, as we' ll see

Latin-1 as a coded character set

● Integer s 0 to 127 (0x00 to 0x7F) same as ASCII.

● Integer s 128 to 255 (0x80 to 0xFF) add most of
the Western European character s, e.g.:

– ¡ (Spanish) 0xA1

– £ (British English) 0xA3

– Ä (German) 0xC4

– Þ (Icelandic) 0xDE

– ê (French) 0xEA

Latin-1 as a character encoding
Still easy: map the code point to an 8-bit integer on the entire

octet.

A (0x41) 0100 0001

... (note the leading zero now!)

b (0x62) 0110 0010

...

ê (0xEA) 1110 1010

...

þ (0xFE) 1111 1110

...

Trouble with Latin-1

● Alphabetization

– Even worse than before. Now all accented
character s sor t after all unaccented ones.

● Extensibility and inclusion

– 256 code points just aren' t very many for multi-
lingual systems. Where is there room for détente?
[or is it detente?]

Other heirs to ASCII
● Latin-2 (ISO-8859-2) “East” European (e.g. ?)

– Polish, Czech, etc

● Latin-3 (ISO-8859-3) “South” European (e.g. ?)

– Esperanto, Maltese, Turkish, etc.

● Latin-4 (ISO-8859-4) “North” European (e.g. ? , ?)

– Estonian, Baltic, Lithuanian, Greenlandic, Lappish

● Latin-5 (ISO-8859-9)

– Latin-1 minus Icelandic plus Turkish

● Latin-6 (ISO-8859-10)

– Squeeze in Latvian and all of Nordic

Too many cooks?

What if you want French and Icelandic at the
same time?

– >256 character s needed

– Encoding collisions in the upper 128 codepoints

There's just not enough room for this many
character s.

Non-Roman Alphabets
● Cyrillic (ISO-8859-5)

– Russian, Tajik, etc.

● Arabic (ISO-8859-6)

– (doesn' t include ligated forms – would quadruple!)

● Greek (ISO-8859-7)

● Hebrew (ISO-8859-8)

● All these still(!) r etain the or iginal ASCII
values for the lower 128 code points.

● What about French and Greek?

Further problems with non-Roman
alphabets

● Lots of new character s

● Mostly non-over lapping with US English

● Mostly non-over lapping with each other

● Complex ligating behavior s

● Arabic and Hebrew have a handedness
problem:

– Their text is wr itten .tfel-ot-thgir

The real monster – East Asian
encodings

● Chinese

– Big-5

– GB

● Korean

– J ohab

– Wan-Sung

● Japanese

– Shift-J IS

Difficulties with East Asian writing
systems

● Number of unique character s

– Chinese hanzi, J apanese kanji, Korean hanja,
Vietnamese ch? Hán all number in the thousands
(at the low end estimate)

– Korean hangul need at least another 1300!

– Where do all these go?

● Order ing

– Alphabetization now near ly meaningless

– What's a natural order for these character s?

Solutions for East Asia
● Wider character s

– Use more octets. -- but this is space constrained!

● Shift encodings

– A control character indicates when to “turn on”
wide character mode. Difficult to randomly-access.

● Prefix encodings

– Zipfian pr inciple: common character s get shor ter
encodings...

● All these have problems...

Unicode

A proposed multi-lingual solution

Unicode

● As a fir st stab, consider Unicode a coded
character set with a very large range of
integer s available.

What's the big deal?

● Efficient (simple)

● Plain text

– Good for corpus work

● Logical order

– Handedness begone!

● Unification

● Conver tibility

Size of Unicode coded character set

● Unicode defines more than a million code
points.

● We'll only look at the Basic Multilingual Plane,
which is the fir st 65,536...

Latin

Gr eek
Cyr illic
Ar abic
Syr iac

Bengali
Gur mur khi

Telugu
Thai

Myanmar
Hangul J amo

Ethiopic
Can.Abor ig.

Ogham, Khmer
Mongolian

Limbu, Tai Le

Unicode is big
0000

1 0000

2 0000

10 FFFF

(SMP)

(All alphabets!)

0000
1000
2000
3000
4000
5000
6000
7000
8000
A000
B000
C000
D000
E000
FFFF

CJ K,
Yi

Han-
gul

IPA &

symbols

0000
0200
0400
0600
0800
0A00
0C00

0E00
1000
1200

1400
1600
1800
1A00

(BMP)

Separates CCS from CE

Unicode separates:

– The coded character set

– The character encoding

Allows user to choose compromises to make

Code point to encoding(s) (Unicode)

Å
C5

212B
[angstrom]

A ˚ 61 30A

00 C5

21 2B

00 41 03 0A

C3 85

E2 84 AB

00 41 CC 8A

Character Code point(s) UTF-16 UTF-8

UCS Transformation Format (UTF)

UTF-16

– Very common, sometimes mislabeled “Unicode”

– Encodes each character within the BMP into 2 octets

– Character semantics and boundar ies very simple

UTF-8

– Uses var iable number of octets to encode the BMP

– Prefix mapping approach, skewed towards ASCII

– (link to discussion of the UTF-8 prefix map)

Unicode extras (1)

● Adopted clever ideas from other systems:

– Handedness and combining character s

– J ohab Hangul decompositional encoding is used
within Unicode

● UTF-16 has 2 var iants: big-endian and little-
endian.

– Long and complicated history

– “Byte Order Mark” (BOM) and its use

Character Encoding extras

● “ASCIIbetical” vs. Alphabetical

– What are the implications?

– How can they be resolved?

● CPAN: Sor t::ArbBiLex

– Allows “natural” alphabetic sor ts

Unicode tools

Does my browser suppor t UTF-8? How well?

– http://www.columbia.edu/kermit/utf8.html

– Includes the classic “I can eat glass, it doesn't hur t me.”

Got glyphs? Look for fonts here:

– http://www.alanwood.net/unicode/fonts.html

Platform-specific tools

Unix, Linux, and Mac OS X:

– Emacs MULE has good suppor t for UTF-8

– One of several clever editor s for Unicode:
http://www.yudit.org/

Mac OS 9:

– http://www.hclrss.demon.co.uk/unicode/fonts_mac.html

Windows:

– get the Ar ial MS Unicode font!

Perl and Unicode

Per l is natively UTF-8 (rev 5.8 and up).

I/O layer s work well:

open $fh, “<:latin1”, $file

or die “couldn't open $file:$!\n”;

Good module suppor t for Unicode from CPAN:

– Unicode::Str ing

● latin2eight.pl, eight2sixteen.pl

Perl and encodings

● Encode

– For handling encodings outside of Unicode

● Unicode::Str ing

– Object-or iented; straightforward

● Unicode::UCD

– Works best if you're using 5.8+

● XML::Parser

– Implicitly uses XML's dependence on encodings

Further readings

Links and tips for better understanding of
character encodings and Unicode

Further readings (Unicode)

● The Unicode Standard (v. 3.0, 4.0), The Unicode Consor tium

– See also http://www.unicode.org for v. 4.0.1

● Programming Perl, 3rd Edition, Larry Wall et al. (aka “The
Camel Book”)

– See especially chapter 15, “Unicode”

● Simon Cozens has a great talk, which inspired this one:

– http://www.netthink.co.uk/downloads/unicode.pdf

Further readings (other encodings)

● East Asian encodings:

– CJKV Information Processing, Ken Lunde (aka “The
Blowfish Book”)

● ISO-8859 (alphabetic) encodings:

– http://czybor ra.com/charsets/iso8859.html

● UW Library (!):

– http://www.lib.washington.edu/help/catalog/unicode/unicodehelp.html

